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Abstract. Let E ⊆ F and E′ ⊆ F ′ be Borel equivalence relations on the standard Borel

spaces X and Y , respectively. The pair (E,F ) is simultaneously Borel reducible to the

pair (E′, F ′) if there is a Borel function f : X → Y that is both a reduction from E to

E′ and a reduction from F to F ′. Simultaneous Borel embeddings and isomorphisms are

defined analogously. We classify all pairs E ⊆ F of smooth countable Borel equivalence

relations up to simultaneous Borel bireducibility and biembeddability, and a significant por-

tion of such pairs up to simultaneous Borel isomorphism. We generalize Mauldin’s notion

of Borel parametrization [9] in order to identify large natural subclasses of pairs of smooth

countable equivalence relations and of singleton smooth (not necessarily countable) equiv-

alence relations for which the natural combinatorial isomorphism invariants are complete,

and we present counterexamples outside these subclasses. Finally, we relate isomorphism of

smooth equivalence relations and of pairs of smooth countable equivalence relations to Borel

equivalence of Borel functions as discussed in Komisarski, Michalewski, and Milewski [8].

1. Introduction

Given equivalence relations E and F on sets X and Y , a reduction from E to F is a function

f : X → Y such that x E y ⇔ f(x) F f(y) for all x, y ∈ X. The study of reductions between

equivalence relations in the Borel setting has been a significant area of research in descriptive

set theory for at least the past twenty-five years. In this setting X and Y are Polish (i.e.,

separable and completely metrizable) spaces, E and F are Borel subsets of the product spaces

X2 and Y 2, and f is Borel measurable.

Recently there has been some attention focused on understanding pairs E ⊆ F of definable

equivalence relations. See, for instance, Miller [11], [12], Pinciroli [14], and Thomas [18] in

the countable Borel setting, Motto Ros [13] for pairs of analytic equivalence relations, and

Feldman, Sutherland, Zimmer [5] and Danilenko [1], [2] in the context of ergodic theory and

orbit equivalence. Motivated by this interest, we define a simultaneous reduction from the

pair E ⊆ F to the pair E′ ⊆ F ′ to be a function that is at once a reduction from E to E′

and a reduction from F to F ′. Injective simultaneous reductions are called embeddings and

bijective ones isomorphisms. The purpose of this paper is to initiate a study of certain classes

of pairs of countable (i.e., having countable classes) Borel equivalence relations considered up

to simultaneous Borel bireducibility and, to a lesser extent, biembeddability and isomorphism.
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As understanding singleton countable Borel equivalence relations under Borel reducibility is

already quite difficult, the study of pairs will naturally begin with classes of equivalence relations

for which the singletons are already well understood. The countable Borel equivalence relations

that are best understood are the smooth and the hyperfinite ones. E is smooth if there is a

Borel reduction from E to equality of reals, and hyperfinite if E is the union of an increasing

sequence of Borel equivalence relations with finite classes. It is easy (granting some deep

results from the classical theory) to classify smooth countable equivalence relations up to Borel

bireducibility, biembeddability, and isomorphism, and in [3] Dougherty, Jackson, and Kechris

classify hyperfinite equivalence relations up to these same notions of equivalence using results

from ergodic theory.

In this paper we concentrate on the simplest class, and consider pairs E ⊆ F of smooth

countable equivalence relations. Perhaps surprisingly, classifying smooth countable pairs up to

simultaneous Borel isomorphism turns out to be difficult and is closely related to the problem of

classifying smooth (not necessarily countable) equivalence relations up to Borel isomorphism.

We will identify combinatorial invariants for simultaneous Borel bireducibility, biembeddability,

and isomorphism of arbitrary pairs of countable Borel equivalence relations, and prove that the

first two of these invariants are complete for smooth countable pairs (Theorems 5.1 and 5.4).

While we do not obtain a complete classification of smooth countable pairs up to simultaneous

Borel isomorphism, we will be able to isolate a large natural subclass of such pairs on which our

combinatorial invariant is complete (Theorem 6.6), and provide counterexamples outside this

class (Theorem 6.9). We also discuss the relative complexities of the isomorphism problems for

smooth equivalence relations and pairs of smooth countable equivalence relations, and relate

each to Borel equivalence of Borel functions as introduced in [8].

The study of simultaneous Borel isomorphism of smooth countable pairs leads us to generalize

a notion from Mauldin [9] and define Borel parametrizations of equivalence relations. We show

that the class of smooth equivalence relations admitting a Borel parametrization is in some sense

the largest natural subclass of Borel equivalence relations for which the obvious combinatorial

isomorphism invariant is complete (Theorem 3.8). Relating to work of Komisarski, Michalewski,

and Milewski [8], we identify a natural class of Borel functions strictly larger than the class

of bimeasurable functions with the property that any two equivalent Borel functions from this

class are in fact Borel equivalent to each other, and we argue that this is the largest meaningful

class having this property.

The interest in sub-equivalence relations is partly motivated by the fact that some of the

most important open problems concerning countable Borel equivalence relations involve sub-

relations. These include, for instance, the problems associated with weakly universal countable

Borel equivalence relations and the union problem for hyperfinite equivalence relations. The

latter asks whether the union of an increasing sequence of hyperfinite equivalence relations is

hyperfinite. Since singleton hyperfinite equivalence relations are already well-understood [3]

and the union problem involves chains F0 ⊆ F1 ⊆ · · · of hyperfinite equivalence relations, a

natural next step in studying hyperfinite equivalence relations is attempting to understand the

manner in which one can lie inside another as a sub-relation. It is our hope, then, that pairs
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of hyperfinite equivalence relations will soon be studied from the perspective of simultaneous

reducibility.

We note that there has already been some work done on understanding hyperfinite pairs

E ⊆ F from a slightly different perspective than the one taken here. Building on [11], Miller

[12] and Pinciroli [14] study equivalence relations on quotient spacesX/E where E is a countable

Borel equivalence relation on the Polish space X. Here a set B ⊆ X/E is Borel if its lifting

B̃ = {x ∈ X : [x]E ∈ B} is Borel, and a set R ⊆ X/E × Y/E′ in a product of such quotients

is Borel if its lifting R̃ = {(x, y) : ([x]E , [y]E′) ∈ R} is Borel in X × Y . Then a function

f : X/E → Y/E′ is Borel if its graph is Borel, or equivalently if there is a Borel function

f̃ : X → Y (a lifting of f) satisfying f̃(x) ∈ f([x]E) for all x ∈ X. For countable Borel

equivalence relations E ⊆ F on X, the equivalence relation F/E is defined on the quotient

space X/E by [x]E F/E [y]E ⇔ x F y. If E′ ⊆ F ′ is another such pair, F/E and F ′/E′ are

isomorphic if there is a bijective Borel reduction from F/E to F ′/E′. Miller [12] classifies all

finite Borel equivalence relations on the (unique up to isomorphism) hyperfinite quotient space

2ω/E0, and Pinciroli [14] proves a version of the well-known Feldman-Moore representation

theorem for a certain class of equivalence relations on quotient Borel spaces.

The relationship between Miller’s framework and ours can be explained as follows. Let E ⊆ F
and E′ ⊆ F ′ be countable Borel equivalence relations on X and Y . If f : X/E → Y/F is an

isomorphism from F/E to F ′/E′ in the sense of [12], then any lifting f̃ of f is a simultaneous

Borel reduction from the pair (E,F ) to the pair (E′, F ′) whose range meets every E′ class in Y .

Conversely, any simultaneous Borel reduction f from (E,F ) to (E′, F ′) induces an isomorphism

between F/E and the restriction of F ′/E′ to the E′-saturation of ran(f). On the other hand,

a simultaneous Borel isomorphism from (E,F ) to (E′, F ′) easily induces an isomorphism from

F/E to F ′/E′, and in general simultaneous isomorphism is a stronger notion than isomorphism

of quotients.

The remainder of this paper is organized as follows. In Section 2 we recall some notions from

the theory of Borel equivalence relations and establish notation and terminology. In Section 3

we identify combinatorial invariants for Borel bireducibility, biembeddability, and isomorphism

of Borel equivalence relations, recall that these first two invariants are complete for smooth

equivalence relations, and identify Borel parametrized equivalence relations as a large natural

class for which the third is complete. We then re-examine these results in the context of

Borel equivalence of Borel functions as studied in [8]. In Section 4 we introduce combinatorial

invariants for simultaneous Borel bireducibility, biembeddability, and isomorphism of pairs of

countable Borel equivalence relations, and in Section 5 we show that the first two of these

invariants are complete for smooth countable pairs. Finally, in Section 6 we again use Borel

parametrizations in identifying a large natural subclass of smooth countable pairs for which

the simultaneous isomorphism invariant is complete, and then we conclude with a discussion

of the relative complexities of Borel equivalence of Borel functions, isomorphism of smooth

equivalence relations, and simultaneous isomorphism of smooth countable pairs.

Acknowledgements. I would like to thank Andreas Blass and Rachel Basse for helpful dis-

cussions on the material in this paper.
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2. Preliminaries

We will need a number of facts from descriptive set theory that will be well-known to experts

but perhaps less well-known generally, so we include most of this material in Appendix A at

the end of the paper. In the present section we develop the background we will need concerning

Borel equivalence relations, and establish some terminology and notation that is mostly (but

not entirely) standard.

2.1. Equivalence relations. An equivalence relation E is countable if each E-class is count-

able, and finite if each E-class is finite. If E and F are equivalence relations on sets X and Y , a

reduction from E to F is a function f : X → Y such that x E y ⇔ f(x) F f(y) for all x, y ∈ X.

An injective reduction is called an embedding and a bijective reduction an isomorphism. E is

reducible to F , written E ≤ F , if there is a reduction from E to F , embeddable in F , written

E v F , if there is an embedding from E to F , and isomorphic to F , written E ∼= F , if there is

an isomorphism from E to F .

A standard Borel space is a measurable space (X,B) for which there exists a Polish (i.e.,

separable and completely metrizable) topology on X whose σ-algebra of Borel sets is B. If X is

a standard Borel space, a set A ⊆ X is analytic if A is the image of some standard Borel space

under a Borel function, and coanalytic if X \ A is analytic. An equivalence relation E on the

standard Borel space X is Borel (analytic, etc.) if E is a Borel subset of X ×X. Throughout

this paper we always work in the Borel setting. This means that equivalence relations live on

standard Borel spaces and are Borel unless we explicitly mention otherwise, and all reductions

are required to be Borel even if we fail to say so explicitly. It is customary to write a subscript

“B” in the Borel setting, and we use the following notation which is quite standard:

E ≤B F ⇐⇒ E is Borel reducible to F ;

E vB F ⇐⇒ E is Borel embeddable in F ;

E ∼=B F ⇐⇒ E is Borel isomorphic to F ;

E ∼B F ⇐⇒ E is Borel bireducible with F , i.e., E ≤B F ∧ F ≤B E;

E ≈B F ⇐⇒ E is Borel biembeddable with F , i.e., E vB F ∧ F vB E.

Let E ⊆ F be equivalence relations on X and let A ⊆ X. We write [x]E = {y ∈ X : x E y}
for the E-equivalence class of x ∈ X, and X/E = {[x]E : x ∈ X} for the quotient space of

E-classes. We write [A]E = {x ∈ X : (∃y ∈ A)x E y} for the E-saturation of A, and say that

A is E-invariant if [A]E = A. If X, E, and A are Borel then [A]E is analytic in general and is

Borel if E is countable. We write E � A = {(x, y) ∈ A2 : x E y} for the restriction of E to A,

and (E,F ) � A for the pair (E � A,F � A). The equivalence relation F/E on X/E is defined by

[x]E F/E [y]E ⇔ x F y. We will denote the equality relation on X by ∆(X), and the indiscrete

equivalence relation on X by I(X) = X2. If G is an equivalence relation on Y , then E ×G is

the equivalence relation on X × Y defined by (x, y) E ×G (x′, y′)⇔ x E x′ ∧ y G y′.

For a set P ⊆ X ×Y in a product space we write πX(P ) = {x ∈ X : (∃y)(x, y) ∈ P} for the

projection of P onto X, and πY for the projection of P onto Y . Sometimes instead we write

π1 (π2) for the projection onto the first (second) factor, especially when X = Y . For x ∈ X
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and y ∈ Y we write Px and P y for the vertical and horizontal sections

Px = {y ∈ Y : (x, y) ∈ P}, P y = {x ∈ X : (x, y) ∈ P}.

By the vertical section equivalence relation on P we mean the equivalence relation E defined

by (x, y) E (x′, y′)⇔ x = x′; the horizontal section equivalence relation is defined analogously.

2.2. Smooth equivalence relations. The results in this section are well known and their

proofs are standard, so we omit them. An equivalence relation satisfying the equivalent condi-

tions of Proposition 2.1 is said to be smooth. Note that every smooth equivalence relation is

Borel.

Proposition 2.1. Let E be an equivalence relation on the standard Borel space X. Then the

following are equivalent:

(1) there is a standard Borel space Y such that E ≤B ∆(Y );

(2) for every uncountable standard Borel space Y , E ≤B ∆(Y );

(3) E admits a countable Borel separating family, i.e., a family (Bn) of E-invariant Borel

subsets of X such that for all x, y ∈ X, x E y if and only if ∀n[x ∈ Bn ⇔ y ∈ Bn]. �

If E is an equivalence relation on the standard Borel space X, the quotient Borel structure on

the set X/E of E-classes is the largest σ-algebra making the canonical surjection πE : x 7→ [x]E

measurable. Explicitly, B ⊆ X/E is Borel in the quotient iff π−1
E (B) = ∪B is Borel in X.

If E is a Borel equivalence relation on X, the measurable space X/E with its quotient Borel

structure may or may not be standard Borel; if it is, then we will call E standard.

Proposition 2.2. Let E be an equivalence relation on the standard Borel space X. Then the

following are equivalent:

(1) the quotient Borel structure on X/E is standard Borel;

(2) there exists a standard Borel space Y and a Borel reduction f : X → Y from E to

∆(Y ) such that ran(f) is Borel;

(3) E is smooth and for any standard Borel space Y and Borel reduction f : X → Y from

E to ∆(Y ), ran(f) is Borel;

(4) |X/E| is either countable or 2ℵ0 , and for any standard Borel space Y of cardinality

|X/E| there is a surjective Borel reduction from E to ∆(Y ). �

If E is an equivalence relation on X, a transversal for E is a subset T ⊆ X that meets each

E-class in exactly one point, and a selector for E is a function σ : X → X whose graph is

contained in E and whose image is a transversal.

Proposition 2.3. Let E be an equivalence relation on the standard Borel space X. Then the

following are equivalent:

(1) E admits a Borel transversal;

(2) E admits a Borel selector. �
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There appears to be no uniform terminology in the literature either for the equivalent prop-

erties of Proposition 2.2 or for the equivalent properties of Proposition 2.3. As mentioned

above, we will call equivalence relations satisfying the conditions of Proposition 2.2 standard.

The term strongly smooth appears in [7] for the property of admitting a Borel transversal, but

it does not appear to be widely used and we suggest the term selective and use it throughout

this paper. It is immediate from Proposition 2.2 that every standard Borel equivalence relation

is smooth. Of course, we also have the following:

Proposition 2.4. Let E be an equivalence relation on the standard Borel space X. If E is

selective then E is standard. �

Thus selective ⇒ standard ⇒ smooth. The next two basic examples show that these impli-

cations cannot be reversed (having all classes uncountable is not essential for this, but will be

useful later).

Example 2.5. Let X be an uncountable standard Borel space and P ⊆ X × X a Borel set

with all sections Px uncountable that does not admit a Borel uniformization (see A.13). Let E

be the vertical section equivalence relation on P . Then a Borel transversal for E would be a

Borel uniformization of P , so E is not selective. However, [(x, y)]E 7→ x is a Borel isomorphism

of P/E with X, so E is standard.

Example 2.6. Let X be an uncountable standard Borel space and P ⊆ X × X a Borel set

with all nonempty sections Px uncountable and whose first projection is not Borel (see A.12).

Let E be the vertical section equivalence relation on P . Then X/E is Borel isomorphic to the

first projection of P and hence is not standard, even though E is smooth as witnessed by the

Borel reduction (x, y) 7→ x from E to ∆(X).

In Section 3 we will discuss equivalence relations admitting a Borel parametrization, which is

an even stronger property than admitting a Borel selector. But we point out that distinctions

between these notions disappear in the context of countable Borel equivalence relations.

Proposition 2.7. Let E be a countable Borel equivalence relation on the standard Borel space

X. Then the following are equivalent:

(1) E is smooth;

(2) E is standard;

(3) E is selective;

(4) E is Borel parametrized (see Section 3);

(5) there exists a Borel partial order relation ≺ on X such that the restriction of ≺ to each

E-class has order type a subset of ω.

(6) there is a sequence Tn of Borel transversals for E such that ∪nTn = X.

When (5) holds we say that ≺ orders each E-class in order type a subset of ω “in a uniform

Borel fashion.”
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2.3. Split Borel equivalence relations. We will use the following notation throughout. We

write c = 2ℵ0 and let

C := ω ∪ {ℵ0, c} and C+ := C \ {0},

so that C+ is the set of possible cardinalities of nonempty Borel sets. We will generally try to

use i, j, k, l to range over ω, m,n to range over ω or occasionally ω ∪ {ℵ0}, and m, n to range

over C. If 〈κi : i ∈ I〉 and 〈λi : i ∈ I〉 are indexed families of cardinals with the same index set

I, we will write 〈κi〉 ≤ 〈λi〉 to mean κi ≤ λi for all i ∈ I. Given the Borel equivalence relation

E on the standard Borel space X, for each m ∈ C+ let

X
(E)
m := {x ∈ X : |[x]E | = m},

and define X
(E)
≤m , X

(E)
<m , etc., in the obvious manner. If E is clear from context we may just

write Xm instead of X
(E)
m .

Now we need a technical notion for which there is no standard term in the literature. If E is a

Borel equivalence relation on X, then X
(E)
c is analytic and each X

(E)
n , 1 ≤ n ≤ ω, is coanalytic

(see A.5 and A.6). We will say that E splits if X
(E)
c is Borel. If E splits, then in fact X

(E)
m is

Borel for each m ∈ C+ (see A.7). A split Borel equivalence relation need not be smooth, and a

smooth split equivalence relation need not be standard, as witnessed by Example 2.6. Similarly,

a standard split equivalence relation need not be selective, as witnessed by Example 2.5. On

the other hand, it is also easy to construct a smooth (even selective) equivalence relation that

does not split.

Example 2.8. Let X and Y be uncountable standard Borel spaces, and let C ⊆ X × Y be a

Borel set with each section Cx nonempty and countable, so that in particular C admits a Borel

uniformization T ⊆ C. Let A ⊆ X be a non-Borel analytic set, and using A.5 let U ⊆ X×Y be

a Borel set with each nonempty section Ux uncountable whose projection is A. Let B = C ∪U ,

and let E be the vertical section equivalence relation on B. Then T is a Borel transversal for

E, so E is selective. However E does not split, since if B
(E)
≤ω were Borel then πX

(
B

(E)
≤ω
)

= X \A
would be Borel.

Thus we have the following diagram of implications, none of which can be reversed (see

Section 3 for the definition of a Borel parametrized equivalence relation).

smooth and countable ⇒ Borel parametrized ⇒ split

⇓
selective ⇒ standard ⇒ smooth

Figure 1. A diagram of implications between properties of equivalence relations.

3. Smooth equivalence relations and Borel parametrizations

We begin by identifying the natural combinatorial invariants for ∼B , ≈B , and ∼=B of Borel

equivalence relations.
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Definition 3.1. Suppose E is a Borel equivalence relation on the standard Borel space X.

For each cardinal m ∈ C+, let nm(E) be the number of E-classes of size m, let n≥m(E) be the

number of E-classes of size at least m, and let

n(E) := |X/E| =
∑

m∈C+

nm(E)

be the total number of E-equivalence classes. Define the fine shape of E to be the sequence

fs(E) := 〈nm(E) : m ∈ C+〉

and the coarse shape of E to be the sequence

cs(E) := 〈n≥m(E) : m ∈ C+〉.

In the appendix we show that nc(E) ∈ C, nm(E) ∈ C ∪ {ℵ1} for all m ∈ C+, and if E splits

then in fact nm(E) ∈ C for all m ∈ C+ (see A.7). Of course, under AD (or CH) we will have

each nm(E) ∈ C regardless, but the above restrictions on fine shape are the only ones that are

provable in ZFC. Indeed, by A.8 it is consistent that for every function α : C+ → C∪{ℵ1} such

that α(c) = c, there is a smooth equivalence relation E with fs(E) = α.

It is a trivial exercise to check that the combinatorial notions of Definition 3.1 provide nec-

essary conditions for the existence of Borel reductions, embeddings, and isomorphisms between

Borel equivalence relations.

Proposition 3.2. Let E and F be Borel equivalence relations.

(i) If E ≤B F , then n(E) ≤ n(F ).

(ii) If E vB F , then cs(E) ≤ cs(F ).

(iii) If E ∼=B F , then fs(E) = fs(F ). �

We now discuss the extent to which (i), (ii), and (iii) of Proposition 3.2 admit converses. Of

course, the largest class of Borel equivalence relations for which the converses could conceivably

hold is the class of smooth equivalence relations. It is well-known, and an easy consequence

of Silver’s theorem (A.4), that n(E) is indeed a complete invariant for Borel bireducibility of

smooth equivalence relations.

Proposition 3.3. Let E and F be smooth equivalence relations on the standard Borel spaces

X and Y , respectively. Then E ≤B F if and only if n(E) ≤ n(F ). In particular, E ∼B F if

and only if n(E) = n(F ). �

It is perhaps less well-known that cs(E) is a complete invariant for Borel biembeddability

of smooth equivalence relations.

Proposition 3.4. Let E and F be smooth equivalence relations on the standard Borel spaces

X and Y , respectively. Then E vB F if and only if cs(E) ≤ cs(F ). In particular, E ≈B F if

and only if cs(E) = cs(F ).

Proof. The forward direction holds for any Borel equivalence relations by Proposition 3.2. For

the converse, we consider several cases.
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Case 1: X is countable. In this case any map defined on X will be Borel, so we may freely

use the axiom of choice. Well-order X as X = {xn : n < |X|}, and inductively define f(xn)

as follows. If there is no k < n such that xk E xn, let m ≥ |[xn]E | be least for which there

exists an F -class of size m disjoint from {f(xi) : i < n}, and define f(xn) to be any element

in any such F -class; otherwise, if k < n is such that xk E xn, let f(xn) be any element in

[f(xk)]F \ {f(xi) : i < n}. Such choices always exist since cs(E) ≤ cs(F ), and the function f

thus defined is an embedding.

Case 2: nc(F ) ≤ ℵ0, so that in particular Xm and Ym are Borel for each m ∈ C+. In this

case let

{[xk]E : k < nc(E)} and {[yk]F : k < nc(F )}

enumerate the E-classes and F -classes in Xc and Yc respectively, noting that nc(E) ≤ nc(F ).

If nc(F ) is finite, then for each k < nc(E) let fk be a Borel isomorphism from [xk]E to [yk]F ,

and if nc(F ) = ℵ0, then for each k < nc(E) let fk be a Borel isomorphism from [xk]E to [y2k]F .

Then f = ∪fk is a Borel embedding from E � Xc to F � Yc such that

cs(E � X≤ω) ≤ cs(F � Y \ [ran(f)]F ).

Hence without loss of generality we may assume that nc(E) = 0, so that E is a smooth countable

equivalence relation. For the rest of Case 2 we make this assumption.

Case 2a: there is largest m ≤ ω such that nm(F ) is uncountable. Fix such m, and fix also

a Borel reduction f : X≤m → Ym from E � X≤m to F � Ym. Using 2.7, well-order each

E-class in X≤m and each F -class in Ym in order type ω or finite in a uniform Borel manner,

and then define an injective Borel reduction g : X≤m → Ym from E � X≤m to F � Ym by

sending the nth element of the E-class [x]E to the nth element of the F -class [f(x)]F . Note

that cs(E � X>m) ≤ cs(F � Y \ [ran(g)]F ) and that X>m is countable, so now we are finished

by Case 1.

Case 2b: there is no largest m ≤ ω such that nm(F ) is uncountable. If n(F ) is countable

then we are back in Case 1, so we may assume that there exist finite m0 < m1 < · · · such that

for each i, nmi
(F ) is uncountable. For each i let

Zi = X≤mi
\

⋃
j<i

X≤mj

 .

Then for each i there is a Borel embedding gi from E � Zi to F � Ymi
by the argument given

in Case 2a. Then ∪igi is a Borel embedding from E � X<ω to F � Y<ω, and by assumption

nω(E) ≤ n≥ω(F ) ≤ ℵ0, so E � Xω vB F � Y≥ω by Case 1. This completes Case 2.

Case 3: nc(F ) = c. Using the fact that F is smooth, fix a Borel reduction f : Y → N from

F to ∆(N ). Then graph(f) is a Borel subset of Y ×N such that the set

U := {α ∈ N : f−1({α}) is uncountable}

is uncountable. Hence by Fact A.15 there is a nonempty perfect set P ⊆ U and a Borel

isomorphism φ of 2ω×P onto a subset R of graph(f) such that for each p ∈ P , φ � 2ω×{p} is a

Borel isomorphism onto Rp×{p}. Fix a compatible Polish topology on X with countable base
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(Bn). Using the fact that E is smooth, let g : X → P be a Borel reduction from E to ∆(P ), and

define the Borel embedding g′ : X → 2ω × P from E into I(2ω)×∆(P ) by g′(x) = (αx, g(x)),

where αx(n) = 1⇔ x ∈ Bn. Now πY ◦φ ◦ g′ : X → Y is a Borel embedding from E into F . �

For ∼=B , we have the following partial converse of Proposition 3.2(iii) which will later be

generalized in Theorem 3.8.

Proposition 3.5. Let E and F be smooth equivalence relations with at most countably many

uncountable equivalence classes. Then E ∼=B F if and only if fs(E) = fs(F ).

Proof. The forward direction follows from Proposition 3.2. For the converse, first decompose

X and Y into the Borel sets

X =
⊔

m∈C+

Xm and Y =
⊔

m∈C+

Ym.

Here Xc and Yc are Borel because nc(E) = nc(F ) ≤ ℵ0, and consequently each Xm, Ym is Borel

by A.7. Now we can write

Xc =
⊔
k<nE

c

[xk]E and Yc =
⊔
k<nF

c

[yk]F

and use the isomorphism theorem (A.1) to obtain Borel isomorphisms fk : [xk]E → [yk]F ,

k < nc(E) = nc(F ). Then ∪kfk is a Borel isomorphism of E � Xc with F � Yc, and we may

turn our attention to X≤ω and Y≤ω.

Fix m ≤ ω. E � Xm and F � Ym are smooth countable equivalence relations, so Xm/E and

Ym/F are standard Borel spaces. Since

|Xm/E| = nm(E) = nm(F ) = |Ym/F |,

we may fix a Borel isomorphism g̃m from Xm/E to Ym/F . Using 2.7, order each E-class

in Xm and each F -class in Ym in order type m in a uniform Borel manner, and for each

x ∈ Xm let k(x) < m be the position of x within [x]E under this ordering. Define the function

gm : Xm → Ym by using g̃m and matching up the orderings, so that gm(x) is the k(x)th element

in the F -class g̃m([x]E). Then gm is a Borel isomorphism from E � Xm to F � Ym, and
⋃
m gm

is a Borel isomorphism from E � X≤ω to F � Y≤ω, completing the proof. �

One might hope to extend Proposition 3.5 to arbitrary smooth equivalence relations, but we

can easily observe that this is impossible. (Note that Proposition 3.5 and Example 3.6 may be

viewed as analogues, respectively, of (ii)⇒ (i) and (i)⇒ (ii) of [8, Proposition 11]).

Example 3.6. There exist smooth equivalence relations E and F such that fs(E) = fs(F )

but E 6∼=B F .

Proof. Let E be a smooth but not selective equivalence relation with uncountably many equiv-

alence classes all of which are uncountable, as in Example 2.5. Let F be the vertical section

equivalence relation on N ×N . Then fs(E) = fs(F ) but E 6∼=B F , since F is selective and E

is not. �
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We will see below that there exists a non-isomorphic pair of selective equivalence relations

all of whose uncountably many equivalence classes are uncountable, so that fine shape fails to

be a complete invariant even in this specialized case. First we characterize a natural class of

smooth equivalence relations for which fine shape is a complete isomorphism invariant.

Definition 3.7. Let E be an equivalence relation on the standard Borel space X. A Borel

parametrization of E is a Borel bijection

φ : X →
⊔

m∈C+

(Zm × Ym) , where

(i) (Zm : m ∈ C+) is a pairwise disjoint sequence of (possibly empty) standard Borel

spaces;

(ii) (Ym : m ∈ C+) is a sequence of standard Borel spaces such that for each m ∈ C+,

|Ym| = m; and

(iii) for all x, y ∈ X, x E y ⇔ (π1 ◦ φ)(x) = (π1 ◦ φ)(y).

We say that E is Borel parametrized if E admits a Borel parametrization.

It is easy to see that Borel parametrized equivalence relations with the same fine shape

are Borel isomorphic to each other. Indeed, let Yc = 2ω × {c} and for each 1 ≤ m ≤ ω let

Ym = m × {m}, so that Ym is an explicit Polish space of cardinality m for each m ∈ C+, and

then for any α : C+ → C let E(α) be the equivalence relation

E(α) :=
⊔

m∈C+

(
∆(Yα(m))× I(Ym)

)
defined on the standard Borel space

Y (α) :=
⊔

m∈C+

(
Yα(m) × Ym

)
.

We make the following observations:

(1) for each α ∈ CC+

, E(α) is a split, selective Borel equivalence relation on Y (α);

(2) if E is Borel parametrized, then E ∼=B E(fs(E)).

In particular, every Borel parametrized equivalence relation is Borel, selective, and splits, and if

E is Borel parametrized then we can think of E(fs(E)) as a sort of normal form representation

of E.

Theorem 3.8. If E and F are Borel parametrized equivalence relations, then E ∼=B F if and

only if fs(E) = fs(F ). Moreover, if E is a smooth equivalence relation that is not Borel

parametrized, then there exists a smooth equivalence relation F such that fs(E) = fs(F ) but

E 6∼=B F .

Proof. The first claim follows immediately from Proposition 3.2 and observation (2) above.

For the second claim, suppose that E is a smooth equivalence relation on the standard Borel

space X that is not Borel parametrized. If E splits, then fs(E) is the fine shape of the Borel

parametrized equivalence relation E(fs(E)), which is not isomorphic to E. Hence we may

assume that E does not split, so in particular nc(E) = c. We will now complete the proof by
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constructing a pair of smooth equivalence relations F1 and F2 with the same fine shape as E

such that F2 is standard and F1 is not.

Fix a Borel reduction f : X → 2ω from E to ∆(2ω). Let P be a Borel subset of 2ω×2ω such

that every nonempty section Pα of P is uncountable but π2(P ) is not Borel. Let

Y = graph(f)⊕ P ⊆ (X × 2ω)⊕ (2ω × 2ω),

and let F1 be the horizontal section equivalence relation on Y defined by (x, α) F1 (x′, α′) iff

α = α′ and either (x, α), (x′, α′) both lie in graph(f) or they both lie in P . Then F1 has the

same fine shape as E and F1 is not standard. On the other hand, by A.6 the set

C = {y ∈ 2ω : f−1(y) is countable and nonempty}

is coanalytic. Let B ⊆ X×2ω be a Borel set each of whose nonempty sections Bα is uncountable

and whose second projection is 2ω \C. Let F2 be the horizontal section equivalence relation on

B ∪ graph(f). Then F2 has the same fine shape as E, and F2 is standard. �

In light of this result, we can rephrase Proposition 3.5 as follows:

Corollary 3.9. If E is a smooth equivalence relation with at most countably many uncount-

able equivalence classes, then E is Borel parametrized. In particular, any smooth countable

equivalence relation is Borel parametrized. �

Next we present an example due to Mauldin which shows that even within the class of selec-

tive equivalence relations each of whose uncountably many equivalence classes is uncountable,

fine shape is not a complete isomorphism invariant.

Example 3.10. There exists a selective equivalence relation E each of whose uncountably

many equivalence classes is uncountable such that E is not Borel parametrized.

Proof. By Mauldin [9, 3.2], there is a closed subset B ⊆ [0, 1]× [0, 1] such that:

(i) for each x ∈ [0, 1], Bx is uncountable (and closed);

(ii) there is no Borel isomorphism g : [0, 1] × [0, 1] → B such that for each x ∈ X, the

function g(x, ·) maps [0, 1] onto Bx.

Taking B to realize this example, let E be the vertical section equivalence relation on B.

Since each Bx is compact, B admits a Borel uniformization by a classical result of Novikov

(see for instance [6, 28.8]), and hence E is selective. Suppose now for contradiction that E

is Borel parametrized. Then in fact there is a Borel parametrization φ of E taking values in

[0, 1] × [0, 1]. Given such a parametrization φ, define the Borel automorphism σ of [0, 1] by

σ(x) = (π1 ◦ φ−1)(x, 0). Then the function g : [0, 1]× [0, 1]→ B defined by

g(x, y) = (x, (π2 ◦ φ−1)(σ−1(x), y) )

is a Borel isomorphism such that g(x, ·) maps [0, 1] onto Bx, contradicting (ii). �

Remark 3.11. In [9], Mauldin calls a Borel set B in the product X × Y of Polish spaces

Borel parametrized if there exists a Borel set Z ⊆ Y and a Borel isomorphism g : X × Z → B

such that for each x ∈ X, g(x, ·) maps Z onto Bx. The argument given in Example 3.10
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shows that if all nonempty sections of B ⊆ X × Y have the same cardinality, then B is Borel

parametrized in the sense of [9] if and only if the vertical section equivalence relation on B

is Borel parametrized in our sense. In light of this we consider our definition to be a natural

generalization of Mauldin’s.

Theorem 3.8 leaves us with the following:

Problem 3.12. Classify smooth equivalence relations (that are not Borel parametrized) up to

Borel isomorphism.

Remark 3.13. Let B be the class of Borel parametrized equivalence relations. Theorem 3.8

shows that fine shape is a complete isomorphism invariant on B, and we argue that B is in some

sense the largest natural class of Borel equivalence relations with this property. Given any fine

shape function α, if ℵ1 is a value of α then there is no canonical way of recovering a smooth

equivalence relation E with fs(E) = α, and if ℵ1 is not a value of E then the most natural

smooth equivalence relation E with fine shape α is the Borel parametrized equivalence relation

E(α). Hence if U 6⊆ B is any collection of smooth equivalence relations on which fine shape is

a complete isomorphism invariant, then U must contain some “unnatural” smooth equivalence

relation that cannot be recovered canonically from its fine shape.

In [8], Komisarski, Michalewski, and Milewski study equivalence and Borel equivalence of

functions between Polish spaces, the latter of which is closely related to Borel isomorphism of

smooth equivalence relations. Here functions f, g : X → Y between Polish spaces X and Y are

equivalent if there is a bijection φ : X → X such that f = gφ, and Borel equivalent if there is

a Borel such φ. For convenience we introduce the following notation, which will appear again

in Section 6. Given standard Borel spaces X and Y and a Borel function g : X → Y , let JgK
denote the smooth equivalence relation on X defined by

x JgK y ⇐⇒ g(x) = g(y).

If Borel functions f, g : X → Y are Borel equivalent with witness φ, then φ is a Borel isomor-

phism from JfK to JgK.
The authors of [8] prove that the Borel function f : X → Y is bimeasurable if and only

if every Borel function g : X → Y that is equivalent to f is in fact Borel equivalent to f

([8, Proposition 11]). Recalling Purves’ theorem [15] that a Borel function f : X → Y is

bimeasurable if and only if {y ∈ Y : f−1({y}) is uncountable} is countable, we see that the

analogous result in our context is that if E is smooth, then fs(E) determines E up to Borel

isomorphism within the class of smooth equivalence relations if and only if all but countably

many E-classes are countable. Using the notion of Borel parametrization, we can state the

analogue of our Theorem 3.8 in the context of Borel equivalence of Borel functions as follows.

Proposition 3.14. Let X, Y be Polish spaces and f, g : X → Y Borel functions such that

JfK and JgK are Borel parametrized. Then f and g are equivalent if and only if they are Borel

equivalent. Moreover, if h : X → Y is a Borel function such that JhK is not Borel parametrized,

then there is Borel h′ : X → Y such that h and h′ are equivalent but not Borel equivalent.



14 SCOTT SCHNEIDER

Proof. Let f, g : X → Y be Borel with JfK and JgK Borel parametrized, and suppose f and g

are equivalent. Let

φf : X →
⊔

m∈C+

(Zm × Ym) and φg : X →
⊔

m∈C+

(Z ′m × Ym)

be Borel parametrizations of JfK and JgK, respectively. Let Af ⊆ C+ be the set of m ∈ C+ such

that Zm 6= ∅, i.e., the set of m ∈ C+ for which f has some fiber of cardinality m. Define Ag ⊆ C+

analogously. Since f and g are equivalent we have Af = Ag, so we write simply A = Af = Ag.

Now let m ∈ A be arbitrary. Fix ym ∈ Ym, and using the fact that f, g are equivalent define the

bijection ψm : Zm → Z ′m so that for each z ∈ Zm, ψm(z) is the unique element of Z ′m such that

f

(
φ−1
f (z, ym)

)
= g

(
φ−1
g (ψm(z), ym)

)
.

Then ψm is Borel, and hence is an isomorphism. Write ψm× idm for the map (z, y) 7→ (ψm(z), y)

from Zm × Ym to Z ′m × Ym. Letting m vary over A, write ψ =
⊔
m∈A

(ψm × idm). Then

φ := φ−1
g ◦ ψ ◦ φf

is a Borel automorphism of X such that f = gφ. This proves the first claim. In light of Purves’

theorem, the second follows immediately from Corollary 3.9 and [8, Proposition 11]. �

Moreover, Proposition 3.14 is optimal in the sense of Remark 3.13; that is, the class of all

Borel functions f for which JfK is Borel parametrized is the largest class of Borel functions

whose Borel equivalence type can be recovered canonically from its equivalence type alone.

We conclude this discussion by observing that Borel equivalence of Borel functions is too

strong to be an exact analogue of Borel isomorphism of smooth equivalence relations. Let us

say that Borel functions f, g : X → Y are weakly equivalent if there exist bijections φ : X → X

and ψ : ran(f) → ran(g) such that ψf = gφ, and weakly Borel equivalent if there exist Borel

measurable such φ and ψ. Clearly (Borel) equivalent functions are weakly (Borel) equivalent,

and the converse can fail. Now the Borel functions f and g are weakly equivalent if and only

if fs(JfK) = fs(JgK), and weakly Borel equivalent if and only if JfK ∼=B JgK. We will return to

these considerations at the end of Section 6.

4. Combinatorics of pairs of countable Borel equivalence relations

In this section we introduce for pairs E ⊆ F of countable Borel equivalence relations an

analogue of “shape” as it was defined in Section 3. Here the notion of shape will be more

complicated, since we will need to consider both local shapes describing the distribution of E-

classes inside a particular F -class, and global shapes describing the distribution of local shapes

across all the F -classes.

Definition 4.1. Let E ⊆ F be countable Borel equivalence relations on the standard Borel

space X, and let C ⊆ X be an F -class. Define the local fine (relative) shape of C to be the

sequence

lfs(E,F )(C) := 〈nm(E � C) : 1 ≤ m ≤ ω〉
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and the local coarse (relative) shape of C to be the sequence

lcs(E,F )(C) := 〈n≥m(E � C) : 1 ≤ m ≤ ω〉.

If the equivalence relations E ⊆ F are clear from context, we might omit reference to them

in the notation and write simply lfs(C) or lcs(C). Note that the local shape (fine or coarse)

of an equivalence class is a function from C+ \ {c} to C \ {c} that is not constantly zero. We

let F denote the set of all possible local fine shapes of equivalence classes, viewed as a Polish

space in the obvious way as a homeomorph of Baire space. That is,

F := {fs(E) � (C+ \ {c}) : E is an equivalence relation on a countable set}.

Let also C denote the set of all possible local coarse shapes. Since

C ⊆ {α ∈ F : α(m) ≥ α(n) whenever m ≤ n},

C is a countable subset of F . We view C as a Polish space with the discrete topology. Below we

will sometimes use self-explanatory notation such as 〈nk, m̄, l〉 to denote the function α from

C+ \ {c} to C \ {c} such that

α(i) =


n if 1 ≤ i ≤ k;

m if k < i < ω;

l if i = ω.

Note that C 6= {α ∈ F : α(m) ≥ α(n) whenever m ≤ n} since, for instance, 〈1̄, 0〉 6∈ C.

Lemma 4.2. Let E ⊆ F be countable Borel equivalence relations on the standard Borel space

X. The functions

X → C
x 7→ lcs([x]F )

and
X → F
x 7→ lfs([x]F )

are Borel.

Proof. Fix E ⊆ F as in the statement of the lemma. For each 1 ≤ m,n ≤ ω, let

Pn,m = {x ∈ X : [x]F has exactly n E-classes containing exactly m elements},
Pn,≥m = {x ∈ X : [x]F has exactly n E-classes containing at least m elements}.

We claim that for each m,n, Pn,m and Pn,≥m are Borel. To see this, fix m,n. Let π : X → X/E

be the quotient map, and let F = EXΓ where Γ = {γi : i ∈ ω}. Let Ym = X
(E)
m /

(
E � X(E)

m

)
,

and let Dm be the equivalence relation Dm =
(
F � X(E)

m )/(E � X(E)
m

)
on Ym. Then

x ∈ Pn,m ⇔ ∃i π(γi · x) ∈ (Ym)(Dm)
n = {C ∈ Ym : |[C]Dm

| = n}.

Similarly, letting Y≥m = X
(E)
≥m /

(
E � X(E)

≥m
)

and D≥m =
(
F � X(E)

≥m
)
/
(
E � X(E)

≥m
)
, we have

x ∈ Pn,≥m ⇔ ∃i π(γi · x) ∈ (Y≥m)
(D≥m)
n = {C ∈ Y≥m : |[C]D≥m

| = n}.

By A.11, this shows that Pn,m and Pn,≥m are Borel. Since C is countable discrete and for each

α ∈ C we have

lcs([x]F ) = α ⇔ x ∈
⋂

1≤m≤ω

Pα(m),≥m,
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it follows that x 7→ lcs([x]F ) is Borel.

To see that x 7→ lfs([x]F ) is Borel, for each function s mapping a finite subset of C+ \ {c}
into C \ {c}, let

Us = {α ∈ F : α � dom(s) = s}.
The sets Us form a base for the topology on F , so we must show that for each such s, the set

{x ∈ X : lfs([x]F ) ∈ Us} is Borel in X. But clearly

lfs([x]F ) ∈ Us ⇔ x ∈
⋂

m∈ dom(s)

Ps(m),m. �

Remark 4.3. It follows from Lemma 4.2 that if E ⊆ F are smooth countable equivalence

relations on X, then the functions [x]F 7→ lcs([x]F ) and [x]F 7→ lfs([x]F ) from X/F to C and

F , respectively, are Borel.

Now we are ready to define the “global” notions of shape that will serve as combinato-

rial invariants for simultaneous Borel reducibility, embeddability, and isomorphism of pairs of

countable Borel equivalence relations.

Definition 4.4. Let E ⊆ F be countable Borel equivalence relations on the standard Borel

space X. For each 1 ≤ m ≤ ω, let n≥m(E,F ) be the number of F -classes that contain at least

m E-classes, and define the coarse (relative) shape of (E,F ) to be the sequence

crs(E,F ) := 〈n≥m(E,F ) : 1 ≤ m ≤ ω〉.

That each n≥m(E,F ) belongs to C follows from Lemma 4.2. Notice that when E is smooth,

crs(E,F ) = cs(F/E).

Recall that the set C of all local coarse shapes is a countable subset of CC+\{c} that is partially

ordered by the relation α ≤ β ⇔ (∀m)α(m) ≤ β(m). An upper set in C is any subset W ⊆ C
such that for all α, β ∈ C, if α ∈W and α ≤ β then β ∈W . Let ↑C denote the collection of all

upper sets in C, and for α ∈ C write ↑α for the set of all β ∈ C such that α ≤ β.

Definition 4.5. Let E ⊆ F be countable Borel equivalence relations on the standard Borel

space X. For each W ∈↑C, let nW (E,F ) be the number of F -classes C for which lcs(C) ∈W .

Define the global coarse (relative) shape of (E,F ) to be the function

gcs(E,F ) : ↑C → C

W 7→ nW (E,F ).

Notice that nW (E,F ) belongs to C because the function x 7→ lcs([x]F ) is Borel and each

W ⊆ C is Borel. In Section 5 we will see that ↑C is countable, which will greatly simplify our

analysis of global coarse shape.

Definition 4.6. Let E ⊆ F be countable Borel equivalence relations on the standard Borel

space X. For each α ∈ F , let nα(E,F ) be the number of F -classes C for which α = lfs(C).

Define the global fine (relative) shape of (E,F ) to be the function

gfs(E,F ) : F → C

α 7→ nα(E,F ).
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Notice that nα(E,F ) belongs to C because x 7→ lfs([x]F ) is Borel. We now show that the

notions of shape introduced in Definitions 4.4, 4.5, and 4.6 provide necessary conditions for

the existence of simultaneous Borel reductions, embeddings, and isomorphisms, respectively,

between pairs E ⊆ F of countable Borel equivalence relations.

Proposition 4.7. Let E ⊆ F and E′ ⊆ F ′ be countable Borel equivalence relations on the

standard Borel spaces X and Y , respectively.

(i) If (E,F ) ≤B (E′, F ′), then crs(E,F ) ≤ crs(E′, F ′).

(ii) If f : X → Y is a simultaneous Borel embedding from (E,F ) to (E′, F ′), then for every

F -class C we have lcs(E,F )(C) ≤ lcs(E′,F ′)([f(C)]F ′).

(iii) If (E,F ) vB (E′, F ′), then gcs(E,F ) ≤ gcs(E′, F ′).

(iv) If (E,F ) ∼=B (E′, F ′), then gfs(E,F ) = gfs(E′, F ′).

Proof. (i) Suppose f : X → Y is a simultaneous Borel reduction from (E,F ) to (E′, F ′) with

f̃ : X/F → Y/F ′ the induced embedding of classes, and let 1 ≤ m ≤ ω be arbitrary. For each

F -class C ⊆ X containing at least m E-classes, f̃(C) must contain at least m E′-classes since

f reduces E to E′. Hence f̃ injectively maps the collection of F -classes containing at least m

E-classes into the collection of F ′-classes containing at least m E′-classes. Thus n≥m(E,F ) ≤
n≥m(E′, F ′), and since m was arbitrary we conclude that crs(E,F ) ≤ crs(E′, F ′).

(ii) Fixing C, the conclusion follows immediately from (i) if we view f � C as a simultaneous

Borel reduction from (∆(C), E � C) to (∆([f(C)]F ′), E
′ � [f(C)]F ′).

(iii) Let f : X → Y be a simultaneous Borel embedding from (E,F ) to (E′, F ′) with induced

embedding f̃ : X/F → Y/F ′. Let W be an arbitrary upper set in C, and suppose that C ⊆ X

is an F -class such that lcs(C) ∈ W . Since lcs(E,F )(C) ≤ lcs(E′,F ′)(f̃(C)) by (ii), we have

lcs(E′,F ′)(f̃(C)) ∈W . Since f̃ is injective, this shows that nW (E,F ) ≤ nW (E′, F ′). As W was

arbitrary, the result follows.

(iv) Suppose f is a simultaneous Borel isomorphism of (E,F ) with (E′, F ′). Then for each

F -class C in X, we have lfs(C) = lfs(f(C)). Thus for each α ∈ F , f induces a bijection

between those F -classes C ⊆ X for which lfs(C) = α and those F ′-classes C ′ ⊆ Y for

which lfs(C ′) = α. In particular, for each α ∈ F we have nα(E,F ) = nα(E′, F ′), and hence

gfs(E,F ) = gfs(E′, F ′), as desired. �

Note that if (E,F ) vB (E′, F ′), then of course also E vB E′, F vB F ′, and (E,F ) ≤B
(E′, F ′), so by Propositions 3.2 and 4.7 we have

cs(E) ≤ cs(E′), cs(F ) ≤ cs(F ′), and crs(E,F ) ≤ crs(E′, F ′).

In Section 5 we will show that if E ⊆ F and E′ ⊆ F ′ are smooth countable equivalence

relations, then gcs(E,F ) ≤ gcs(E′, F ′) implies (E,F ) vB (E′, F ′). Now we show that the

three inequalities above follow easily from the assumption that gcs(E,F ) ≤ gcs(E′, F ′) even

if these equivalence relations are not smooth.

Proposition 4.8. Let E ⊆ F and E′ ⊆ F ′ be countable Borel equivalence relations on the

standard Borel spaces X and Y , respectively. If gcs(E,F ) ≤ gcs(E′, F ′) then cs(E) ≤ cs(E′),

cs(F ) ≤ cs(F ′), and crs(E,F ) ≤ crs(E′, F ′).
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Proof. To see that crs(E,F ) ≤ crs(E′, F ′), notice that for each 1 ≤ m ≤ ω we have

n≥m(E,F ) = n↑〈m,0̄,0〉(E,F ) ≤ n↑〈m,0̄,0〉(E
′, F ′) = n≥m(E′, F ′).

To see that cs(F ) ≤ cs(F ′), for each 1 ≤ m ≤ ω let Wm be the set of all α ∈ C such that

any class having local coarse shape α contains at least m elements. Then each Wm is an upper

set, so for each 1 ≤ m ≤ ω we have

n≥m(F ) = nWm
(E,F ) ≤ nWm

(E′, F ′) = n≥m(F ′).

Finally, to see that cs(E) ≤ cs(E′), fix 1 ≤ m ≤ ω, let 1 ≤ k < ω, and let Wk = ↑〈km, 0̄, 0〉
if m < ω and Wk = ↑ 〈k̄, k〉 if m = ω. Notice that for any F -class C, lcs(C) ∈ Wk iff C

has at least k E-classes containing at least m elements. Therefore nWk
(E,F ) is the number of

F -classes that have at least k E-classes containing at least m elements. It follows that

n≥m(E) =
∑

1≤k<ω

nWk
(E,F ) ≤

∑
1≤k<ω

nWk
(E′, F ′) = n≥m(E′). �

Before proceeding to consider the converses of (i), (iii), and (iv) of Proposition 4.7 in the

next two sections, we explicitly state an easy technical lemma that will be useful later.

Lemma 4.9. Let E ⊆ F and E′ ⊆ F ′ be smooth countable equivalence relations on the standard

Borel spaces X and Y , respectively, and suppose φ : X → Y is a Borel reduction from F to F ′.

(i) If lcs([x]F ) ≤ lcs([f(x)]F ′) for all x ∈ X, then there is a simultaneous Borel embedding

ψ : X → Y from (E,F ) to (E′, F ′) such that for all x ∈ X, φ(x) F ′ ψ(x);

(ii) If lfs([x]F ) = lfs([f(x)]F ′) for all x ∈ X, then there is a simultaneous Borel isomor-

phism ψ : X → Y � [ran(φ)]F ′ from (E,F ) to (E′, F ′) � [ran(φ)]F ′ such that for all

x ∈ X, φ(x) F ′ ψ(x).

Proof. We argue as in the proof of Case 1 of Proposition 3.4. Using 2.7, well-order in a uniform

Borel manner each F -class in order type finite or ω, and do likewise with each F ′-class. Let

C = {xn : n < |C|} be a particular F -class, indexed according to our ordering, and likewise

write D = [φ(C)]F ′ = {yn : n < |D|}. Working on C, inductively define ψ(xn) as follows. If

there is no k < n such that xk E xn, let m ≥ |[xn]E | be least for which there exists an E′-class

in D of size m disjoint from {ψ(xi) : i < n}, and define ψ(xn) to be the least-indexed element

in D that belongs to such an E′-class; otherwise, if k < n is such that xk E xn, let f(xn) be the

least-indexed element in [ψ(xk)]E′ \ {ψ(xi) : i < n}. The hypotheses for (i) and (ii) guarantee

that such choices always exist. The function ψ thus defined is Borel since the well-orderings

of the F -classes and the F ′-classes were Borel. Finally, it is easy to check that ψ satisfies the

conclusions of (i) and (ii) provided that the corresponding hypotheses hold. �

5. Classifying smooth countable pairs up to ∼B and ≈B

In this section we establish the converses of parts (i) and (iii) of Proposition 4.7 for pairs

E ⊆ F of smooth countable equivalence relations. The fact that coarse relative shape is a

complete invariant for ∼B will follow easily from Proposition 3.4, and most of our effort will

be spent on ≈B , which involves some interesting combinatorics.
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Theorem 5.1. Let E ⊆ F and E′ ⊆ F ′ be smooth countable equivalence relations on the stan-

dard Borel spaces X and Y , respectively. Then (E,F ) ≤B (E′, F ′) if and only if crs(E,F ) ≤
crs(E′, F ′). In particular, (E,F ) ∼B (E′, F ′) if and only if crs(E,F ) = crs(E′, F ′).

Proof. The forward direction holds for any pairs of countable Borel equivalence relations by

Proposition 4.7. For the converse, consider the smooth equivalence relations F/E and F ′/E′

on the standard Borel spaces X/E and Y/E′, respectively. Since

crs(E,F ) = cs(F/E) and crs(E′, F ′) = cs(F ′/E′),

by Proposition 3.4 there is a Borel embedding f̃ : X/E → Y/E′ from F/E into F ′/E′. Letting

T ⊆ Y be a Borel transversal for E′, define f : X → Y by

f(x) = the unique element of T that belongs to f̃([x]E).

Then f is a simultaneous Borel reduction from (E,F ) to (E′, F ′). �

The remainder of this section is devoted to showing that global coarse shape is a complete

invariant for the simultaneous biembeddability relation on pairs of smooth countable equiv-

alence relations. We begin by proving that (C,≤) is a well partial order, i.e., that (C,≤) is

well-founded and has no infinite antichains, which will imply that ↑C is countable. Recall that

C is the countable set of all function α : {1, . . . , ω} → {0, . . . , ω} such that α 6= 0̄, α(m) ≥ α(n)

whenever m ≤ n, and α(ω) = limα(n), ordered by α ≤ β ⇔ (∀m)α(m) ≤ β(m).

Lemma 5.2. (C,≤) is well-founded.

Proof. Suppose 〈αk : k ∈ ω〉 is a strictly decreasing sequence in C. For each k ∈ ω, let m(k)

be the least m such that αk(m) > αk+1(m). Passing to a subsequence of 〈m(k) : k ∈ ω〉 if

necessary, we may assume that 〈m(k) : k ∈ ω〉 is (weakly) increasing. But then 〈αk+1(m(k)) :

k ∈ ω〉 is an infinite strictly decreasing sequence of natural numbers. �

Lemma 5.3. (C,≤) has no infinite antichains.

Proof. Suppose for contradiction that {αk : k ∈ ω} ⊆ C is pairwise ≤-incomparable. At

most one αk can be of the form 〈ω̄, n〉, so without loss of generality none of them have this

form. This means that for every k there is n(k) ∈ ω such that for all but finitely many i ∈ ω,

αk(i) = αk(ω) = n(k).

Now, suppose first that the mapping k 7→ n(k) has unbounded range. For arbitrary k, if

αk(0) were finite then fixing j such that αk(0) ≤ n(j) we would have αk(i) ≤ αj(i) for all i, so

αk(0) must be ω. But this is true for all k, so by continuing this argument inductively we see

that αk(i) = ω for all k and i, a contradiction.

Hence we may assume that there is N ∈ ω such that n(k) = N for infinitely many k. Fix

such N , and by passing to a subsequence suppose n(k) = N for all k. For each k, let m(k) ∈ ω
be least such that αk(i) = N for all i ≥ m(k). Now we will inductively define a decreasing

sequence of infinite subsets Aj ⊆ ω along with integers kj and `j as follows. For the induction

basis, let A0 = ω, let k0 ∈ A0 be such that m(k0) is least in {m(k) : k ∈ A0}, and let

`0 < m(k0) be such that (∃∞k ∈ A0)αk(`0) < αk0(`0). There must exist such `0 since for every
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k 6= k0 there is some ` for which αk(`) < αk0(`), while for all i ≥ m(k0), αk0(i) ≤ αk(i). Then

supposing Aj , kj , and `j have been defined, let

Aj+1 = {k ∈ Aj : αk(`j) < αkj (`j)};
kj+1 ∈ Aj+1 is such that m(kj+1) is least in {m(k) : k ∈ Aj+1};
`j+1 < m(kj+1) is such that (∃∞k ∈ Aj+1)αk(`j+1) < αkj+1(`j+1).

Now let 〈`j(i) : i ∈ ω〉 be a subsequence of 〈`j : j ∈ ω〉 that is (weakly) increasing. Then for

all i ∈ ω we have

αkj(i)(`j(i)) > αkj(i+1)
(`j(i)) ≥ αkj(i+1)

(`j(i+1)),

so

〈αkj(i)(`j(i)) : i ∈ ω〉

is an infinite strictly decreasing sequence of natural numbers, a contradiction. �

Together Lemmas 5.2 and 5.3 imply that any upper set in C has the form

{β ∈ C : α0 ≤ β ∨ · · · ∨ αk ≤ β}

for some α0, . . . , αk ∈ C. In particular, since C is countable it follows that ↑C is also countable.

Writing ᾱ = (α0, . . . , αk), we will use the notation

↑(ᾱ) = {β ∈ C : α0 ≤ β ∨ · · · ∨ αk ≤ β}

for the upper set determined by ᾱ. We view ↑ C as a Polish space with the discrete topology,

and we think of gcs(E,F ) as the “sequence” of values n↑(ᾱ)(E,F ) as ↑(ᾱ) varies over ↑C.

Theorem 5.4. Let E ⊆ F and E′ ⊆ F ′ be smooth countable equivalence relations on the stan-

dard Borel spaces X and Y , respectively. Then (E,F ) vB (E′, F ′) if and only if gcs(E,F ) ≤
gcs(E′, F ′). In particular, (E,F ) ≈B (E′, F ′) if and only if gcs(E,F ) = gcs(E′, F ′).

Our proof of Theorem 5.4 will make use of Hall’s marriage theorem, which we state here in

the following form. Let A = {Ai : i ∈ I} be an indexed family of finite sets. A system of distinct

representatives for A is an injective function s : I →
⋃
i∈I Ai such that for all i ∈ I, s(i) ∈ Ai.

The marriage condition for A is the statement that for all subsets J ⊆ I, |J | ≤ |
⋃
i∈J Ai|.

Then Hall’s theorem states that A admits a system of distinct representatives if and only if A
satisfies the marriage condition.

Proof of Theorem 5.4. The forward direction follows from Proposition 4.7(iii). As a preliminary

step in proving the converse, we will split the spaces X and Y into two invariant Borel sets,

and work on each separately. Thus we let

S0 = {α ∈ C : n↑α(E′, F ′) < ω}

and define

X0 = {x ∈ X : lcs([x]F ) ∈ S0} and Y0 = {y ∈ Y : lcs([y]F ′) ∈ S0}.

We also let

S1 = C \ S0, X1 = X \X0, and Y1 = Y \ Y0.
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Notice that S0 is an upper subset of C, and hence we may fix ᾱ = (α0, . . . , αk) such that

S0 = ↑(ᾱ). Then each αi belongs to S0, and S0 =
⋃
i≤k ↑ αi. It follows that there are at

most finitely many F ′-classes with local coarse shape in S0, and hence by our assumption that

gcs(E,F ) ≤ gcs(E′, F ′), there are at most finitely many F -classes in X0. In particular, X0

is a countable F -invariant subset of X. We will work separately on X0 and on X1, obtaining

simultaneous Borel embeddings f0 : X0 → Y0 from (E,F ) � X0 to (E′, F ′) � Y0 and f1 : X1 →
Y1 from (E,F ) � X1 to (E′, F ′) � Y1. For i ∈ {0, 1}, let us write

Ei = E � Xi, Fi = F � Xi, E′i = E′ � Yi, F ′i = F ′ � Yi.

The key fact that will allow us to work separately on the two pieces is the observation that

gcs(E0, F0) ≤ gcs(E′0, F
′
0)

and

(∗) gcs(E1, F1) ≤ gcs(E′1, F
′
1).

To see that the first inequality is true, note that for any upper set W in C, the set W ∩ S0 is

again an upper set, and

nW (E0, F0) = nW∩S0
(E0, F0) = nW∩S0

(E,F )

≤ nW∩S0(E′, F ′) = nW∩S0(E′0, F
′
0) = nW (E′0, F

′
0).

For the second inequality, if W is any upper set contained in S0 then

nW (E1, F1) = nW (E′1, F
′
1) = 0,

and if W is any upper set in C such that W ∩S1 6= ∅, then nW (E′, F ′) is infinite, which implies

that

nW (E1, F1) ≤ nW (E,F ) ≤ nW (E′, F ′) = nW (E′1, F
′
1).

Now that we have broken the problem into two pieces, first we consider defining a simul-

taneous Borel embedding f0 : X0 → Y0 from (E0, F0) to (E′0, F
′
0). We have that X0/F0 and

Y0/F
′
0 are finite, so X0 and Y0 are countable. Hence any map defined on X0 will be Borel, so

the problem is purely one of combinatorics. In fact, the problem is exactly the one addressed

by Hall’s marriage theorem. Using the notation described above, we have I = X0/F0 and for

each i = [x]F0
∈ I,

Ai =
{

[y]F ′0 ∈ Y0/F
′
0 : lcs(E0,F0)([x]F0

) ≤ lcs(E′0,F
′
0)([y]F ′0)

}
.

Now let J ⊆ I be arbitrary, and let J ′ be the upward closure of J in X0/F0, i.e.,

J ′ = { [x]F ∈ X0/F0 : (∃C ∈ J) lcs(C) ≤ lcs([x]F ) } ⊆ X0/F0.

Using now the fact that gcs(E0, F0) ≤ gcs(E′0, F
′
0), we have for each J ⊆ I that

|J | ≤ |J ′| ≤

∣∣∣∣∣⋃
i∈J

Ai

∣∣∣∣∣ .
But this is exactly the marriage condition for A = {Ai : i ∈ I}, so by Hall’s theorem there

exists a system of distinct representatives s : I →
⋃
i∈I Ai for A. Then s is an injection
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from X0/F0 to Y0/F
′
0 such that for all C ∈ X0/F0, lcs(C) ≤ lcs(s(C)). We conclude that

(E0, F0) vB (E′0, F
′
0) by Lemma 4.9.

Next we turn to the construction of a simultaneous Borel embedding f1 : X1 → Y1 from

(E1, F1) to (E′1, F
′
1). Recycling notation, for α ∈ S1 ⊆ C let us temporarily write Xα for the

set of x ∈ X1 such that lcs([x]F ) = α, and let S∗1 = {α ∈ S1 : Xα 6= ∅}. S∗1 is countable, so

let 〈αk : k < N〉 enumerate S∗1 , where N = |S∗1 | ∈ ω ∪ {ω}. We will define, for each k < N , a

simultaneous Borel embedding gk : Xαk
→ Y1 from (E1, F1) � Xαk

to (E′1, F
′
1). For notational

convenience we put

X(k) :=
⋃
i≥k

Xαi and Z(k) := Y1 \
⋃
i<k

[ran(gi)]F ′ .

We will define the functions gk by induction on k so that for each k < N , ran(gk) ⊆ Z(k) and

(∗∗) gcs
(

(E′1, F
′
1) � Z(k + 1)

)
= gcs

(
E′1, F

′
1

)
.

Supposing we have done this,
⋃
k gk will then be a simultaneous Borel embedding from (E1, F1)

to (E′1, F
′
1), as desired. Thus fix k < N and suppose we have defined gi for each i < k satisfying

the stated conditions. In particular, note by (∗) and (∗∗) that

gcs
(

(E1, F1) � X(k)
)
≤ gcs(E1, F1) ≤ gcs(E′1, F

′
1) = gcs

(
(E′1, F

′
1) � Z(k)

)
.

This implies that

n↑αk

(
(E′1, F

′
1) � Z(k)

)
= n↑αk

(E′1, F
′
1),

and therefore since αk ∈ S1, n↑αk

(
(E′, F ′) � Z(k)

)
is infinite.

Now we consider two cases. First suppose n↑αk

(
(E′, F ′) � Z(k)

)
= c. Then since ↑ αk is

countable, there must be β ∈↑αk such that the number of F ′-classes in Z(k) having local coarse

shape β is c. Fix such β, and let U be an F ′-invariant Borel subset of Z(k) such that every

F ′-class in U has local coarse shape β and both U and Z(k) \U contain uncountably many F ′-

classes having local coarse shape β. Since |U/F ′| = c, there is a Borel reduction φ : Xαk
→ U

from F1 � Xαk
to F ′1 � U , and since α ≤ β this reduction can be adjusted using Lemma 4.9

to obtain a Borel embedding gk from (E1, F1) � Xαk
into (E′1, F

′
1) � U , as desired. Finally,

since every F ′-class in U ⊆ Z(k) \ Z(k + 1) has local coarse shape β but Z(k) \ U ⊆ Z(k + 1)

contains uncountably many F ′-classes with local coarse shape β, (∗∗) continues to hold after

the construction of gk.

For the second case, suppose n↑αk

(
(E′, F ′) � Z(k)

)
= ℵ0. If there is any particular β ∈↑αk

for which there exist infinitely many F ′-classes in Z(k) having local coarse shape β, then as

above we can let U be an F ′-invariant subset of Z(k) such that every F ′-class in U has local

coarse shape β and both U and Z(k) \U contain infinitely many F ′-classes having local coarse

shape β, and define gk using 4.9 so that it takes values in U . In this case (∗∗) will continue to

hold for the same reason as above, namely we will have gcs((E′, F ′) � Z(k)) = gcs((E′, F ′) �

Z(k) \U). So we may assume that for every β ∈↑αk there are at most finitely many F ′-classes

in Z(k) having local coarse shape β. Let V be the set of all β ∈↑ αk for which there exists

at least one F ′-class in Z(k) having local coarse shape β, so that V ⊆ C is infinite. Since

(V,≤) is a well partial order, there exist β0, . . . , βm ∈ V such that V \ {αk} = ↑ (β0, . . . , βm).
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By the pigeon-hole principle, there must be i ∈ {0, . . . ,m} for which there are infinitely many

F ′-classes in Z(k) having local coarse shape in ↑ βi. Continuing inductively we obtain an

increasing sequence αk = γ0 < γ1 < γ2 < γ3 < · · · of local coarse shapes in V such that for

each i, there are infinitely many F ′-classes in Z(k) having local coarse shape in ↑γi. Now for

each i ∈ ω let Ci be an F ′-class having local coarse shape γ2i, and let U = ∪iCi. As in the

previous paragraph, since |Xαk
/F | ≤ |U/F ′| and lcs(C) ≤ lcs(C ′) for every F -class C ⊆ Xαk

and F ′-class C ′ ⊆ U , we may now define gk to embed (E1, F1) � Xαk
into (E′1, F

′
1) � U using

4.9. It only remains to check that (∗∗) continues to hold. Let W ∈↑ C be arbitrary. If there

is an F ′-class C ⊆ Y1 such that lcs(C) ∈ W and C ⊆ Z(k) \ Z(k + 1), then by construction

there is i such that γ2i ∈ W . But then for all j ≥ i there is an F ′-class in Z(k + 1) with local

coarse shape γ2j+1 ∈W , so nW
(
(E′1, F

′
1) � Z(k + 1)

)
= ℵ0 as well. �

6. Classifying smooth countable pairs up to ∼=B

In this final section we determine the extent to which global fine shape is a complete invariant

for simultaneous Borel isomorphism of pairs of smooth countable equivalence relations. We

begin by identifying those functions that can arise as a global fine shape. It will be helpful

to introduce some specialized notation. First, to any Borel set B ⊆ X × Y in a product of

standard Borel spaces, we associate the “section-counting” function B̂ : Y → C defined by

B̂(y) = |By|.

In particular, if g : X → Y is a Borel function then we think of ĝ : Y → C as the fiber-counting

function that associates to each y ∈ Y the cardinality of g−1(y). Second, as in Section 3 we

will continue to write JgK for the smooth equivalence relation on dom(g) induced by the Borel

function g.

Lemma 6.1. Let φ : F → C be an arbitrary function. Then φ is the global fine relative shape

of some pair E ⊆ F of smooth countable equivalence relations if and only if there is a standard

Borel space X and a Borel function g : X → F such that φ = ĝ.

Proof. For the forward direction, suppose φ = gfs(E,F ), where E ⊆ F are smooth countable

equivalence relations on the standard Borel space Y . Let X = Y/F , and let g([y]F ) = lfs([y]F ).

Then φ = ĝ. For the converse, we will describe a general construction that canonically associates

to any Borel function g : X → F a pair of smooth equivalence relations Eg(X) ⊆ Fg(X) such

that ĝ = gfs(Eg(X), Fg(X)).

Let X be any fixed standard Borel space. Define the Borel set U(X) ⊆ X × ω × ω × ω by

(x, k,m, n) ∈ U(X) ⇔ n = 0 ∨ k < n.

Then on U(X) define the equivalence relations Eu(X) ⊆ Fu(X) by

(x, k,m, n) Fu(X) (x′, k′,m′, n′) ⇔ x = x′

and

(x, k,m, n) Eu(X) (x′, k′,m′, n′) ⇔ x = x′ ∧ n = n′ ∧ m = m′.
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If X is clear from context or unimportant then we omit it from the notation and write simply

U , Eu, and Fu. The equivalence relations Eu ⊆ Fu are smooth countable equivalence relations

on U . Intuitively, (x, k,m, n) is the (k+1)-th element of the (m+1)-th Eu-class of size n inside

[(x, k,m, n)]Fu , where we interpret n = 0 to mean of size ω; in particular, each Fu-class has

local fine shape 〈ω̄, ω〉.
Now, given the standard Borel space X and any Borel function g : X → F , define the Borel

set Bg(X) ⊆ U(X) by

(x, k,m, n) ∈ Bg(X) ⇔ ( n = 0 ∧ m < g(x)(ω) )

or ( k < n ∧ m < g(x)(n) ).

Then we define the equivalence relations

Eg(X) := Eu(X) � Bg(X) and Fg(X) := Fu(X) � Bg(X),

again omitting reference to X when convenient. Then Eg ⊆ Fg are smooth countable equiva-

lence relations on Bg such that for each element (x, k,m, n) ∈ Bg, the Fg-class of (x, k,m, n)

has local fine shape g(x). From this one easily checks that gfs(Eg, Fg) = ĝ. �

It follows from Lemma 6.1 that the global fine relative shape of a pair E ⊆ F of smooth

countable equivalence relations need not be a Borel function, though by A.5 and A.6 it will be

σ(Σ1
1)-measurable and in particular universally measurable, i.e., µ-measurable for any σ-finite

Borel measure µ. We will use the construction of Eg(X) ⊆ Fg(X) frequently throughout the

remainder of this section, along with the facts that

ĝ = gfs(Eg, Fg) and gfs(E,F ) = ˆlfs(E,F ).

Recall that for smooth countable equivalence relations E ⊆ F on the standard Borel space

X, the local fine relative shape function lfs(E,F ) : X/F → F associated to (E,F ) is Borel.

In this section we will often be concerned with the function lfs(E,F ) rather than with the

local fine shape lfs(E,F )(C) of any particular equivalence class C, and we improve notation by

sometimes writing lfs(E,F ) in place of lfs(E,F ).

Lemma 6.2. Suppose that E ⊆ F and E′ ⊆ F ′ are smooth countable equivalence relations. If

(E,F ) ∼=B (E′, F ′), then Jlfs(E,F )K ∼=B Jlfs(E′, F ′)K.

Proof. Suppose E ⊆ F are defined on X, and E′ ⊆ F ′ on Y . If φ : X → Y is a simultaneous

Borel isomorphism from (E,F ) to (E′, F ′), then the Borel function φ̃ : X/F → Y/F ′ defined

by φ̃([x]F ) = [φ(x)]F ′ is an isomorphism from Jlfs(E,F )K to Jlfs(E′, F ′)K. �

Lemma 6.3. Let g : X → F be any Borel function into F . Then JgK ∼=B Jlfs(Eg, Fg)K. In fact,

there is a Borel isomorphism φ : X → Bg/Fg such that for all x ∈ X, g(x) = lfs(Eg,Fg)(φ(x)).

Proof. Recall that Jlfs(Eg, Fg)K is an equivalence relation defined on Bg(X)/Fg(X), where

Bg(X) ⊆ X × ω3. For each x ∈ X, let φ(x) be the unique Fg-class in Bg whose elements have

x as their first component. Then φ is the desired isomorphism. �
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Using these observations together with Lemma 6.1, we can show that global fine shape is not

a complete simultaneous isomorphism invariant, even amongst those smooth countable pairs

with Borel global fine shape functions.

Example 6.4. There exist smooth countable equivalence relations E ⊆ F and E′ ⊆ F ′ such

that gfs(E,F ) = gfs(E′, F ′), but (E,F ) 6∼=B (E′, F ′). In fact, such pairs (E,F ) and (E′, F ′)

can be found with gfs(E,F ) constant.

Proof. Let G and H be smooth equivalence relations each of whose uncountably many equiva-

lence classes is uncountable, and such that G is selective and H is standard but not selective,

so in particular G 6∼=B H. Then G and H admit surjective Borel reductions to ∆(F), say g and

h respectively. Note that ĝ(α) = ĥ(α) = c for all α ∈ F . By Lemma 6.3, we have

Jlfs(Eg, Fg)K ∼=B G and Jlfs(Eh, Fh)K ∼=B H.

Therefore

Jlfs(Eg, Fg)K 6∼=B Jlfs(Eh, Fh)K,

which by Lemma 6.2 implies that

(Eg, Fg) 6∼=B (Eh, Fh),

even though

gfs(Eg, Fg) = ĝ = ĥ = gfs(Eh, Fh). �

Remark 6.5. Example 6.4 shows that one way to find smooth countable pairs E ⊆ F and

E′ ⊆ F ′ such that gfs(E,F ) = gfs(E′, F ′) but (E,F ) 6∼=B (E′, F ′) is to find Borel functions

g, g′ into F such that ĝ = ĝ′ but JgK 6∼=B Jg′K. Indeed, we can produce families of pairwise non-

isomorphic smooth countable pairs from families of pairwise non-isomorphic smooth singletons

as follows. Suppose {Di : i ∈ I} is a family of smooth equivalence relations such that:

(1) each Di has uncountably many equivalence classes, all of them uncountable;

(2) each Di is standard;

(3) for i 6= j ∈ I, Di 6∼=B Dj .

For each i ∈ I, let gi be a surjective Borel reduction from Di to ∆(F). Then

{(Egi , Fgi) : i ∈ I}

is a pairwise non-isomorphic family of pairs of smooth countable equivalence relations all having

the same (constant) global fine shape.

Of course, a smooth countable pair E ⊆ F having global fine shape function constantly c is

rather unnatural, and we now turn our attention to identifying a large natural class of smooth

countable pairs on which global fine shape is a complete isomorphism invariant. It turns out

that again the notion of Borel parametrization plays a central role.

Theorem 6.6. Let E ⊆ F and E′ ⊆ F ′ be smooth countable equivalence relations on the

standard Borel spaces X and Y , respectively, such that Jlfs(E,F )K and Jlfs(E′, F ′)K are Borel

parametrized. Then (E,F ) ∼=B (E′, F ′) if and only if gfs(E,F ) = gfs(E′, F ′).



26 SCOTT SCHNEIDER

Before proving Theorem 6.6 we make some remarks about its statement and establish a

lemma. First, recall that the local fine shape function lfs(E,F ) is defined not on X but on

X/F . Let us temporarily write ˙lfs(E,F ) for the point map x 7→ lfs(E,F )([x]F ) from X

to F . Then ˙lfs(E,F ) determines the smooth equivalence relation J ˙lfs(E,F )K on X, and

Jlfs(E,F )K is just the quotient of J ˙lfs(E,F )K by F . We state Theorem 6.6 using Jlfs(E,F )K
rather than J ˙lfs(E,F )K because it is the former that naturally arises in the proof. However,

the following fact implies that Jlfs(E,F )K is Borel parametrized if and only if J ˙lfs(E,F )K is,

so either could be used in the statement of Theorem 6.6. The proof of Proposition 6.7 is given

in the appendix (see B.1).

Proposition 6.7. Let D be a smooth equivalence relation on the standard Borel space X, and

let F ⊆ D be a smooth countable sub-equivalence relation. Then D is Borel parametrized if and

only if D/F is Borel parametrized.

The following lemma will be used in the proof of Theorem 6.6, and will imply that gfs(E,F )

being Borel is a necessary (though by 6.4 not sufficient) condition for the isomorphism type of

(E,F ) to be completely determined by gfs(E,F ).

Lemma 6.8. Let X and Y be standard Borel spaces and let g : X → Y be any Borel func-

tion. Then ĝ is Borel if and only if JgK splits and is standard. In particular, if JgK is Borel

parametrized then ĝ is Borel.

Proof. Suppose JgK splits and is standard. Since JgK is standard, Y \ ran(g) is Borel, so ĝ−1(0)

is Borel. Since JgK splits, the set C = {y ∈ Y : g−1(y) is uncountable} = ĝ−1(c) is Borel. That

ĝ−1(m) is Borel for each 1 ≤ m ≤ ω now follows from A.11. Conversely, if JgK is not standard

then ĝ−1(0) = Y \ ran(g) is not Borel, and if JgK does not split then

{(x, y) ∈ graph(g) : g−1(y) is uncountable} = π−1
Y

(
ĝ−1(c)

)
is not Borel, which implies that ĝ−1(c) is not Borel. �

Proof of Theorem 6.6. By Proposition 4.7, we need only establish the backward direction. Let

φX : X/F →
⊔

m∈C+

(Zm × Ym)

be a Borel parametrization of Jlfs(E,F )K. For each m ∈ C+, let

Zm(X) = gfs(E,F )−1(m) =
(

ˆlfs(E,F )
)−1

(m),

so that Zm(X) is the set of all α ∈ F such that there are exactly m F -classes C having local

fine shape α. Then each Zm(X) is Borel by Lemma 6.8, and the map

ψX :
⊔

m∈C+

(Zm × Ym) →
⊔

m∈C+

(Zm(X)× Ym)

(z, y) 7→
(
lfs(E,F )

(
φ−1
X (z, y)

)
, y
)

is a Borel isomorphism from⊔
m∈C+

(∆(Zm)× I(Ym)) to
⊔

m∈C+

(∆(Zm(X))× I(Ym))
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such that for every F -class C ⊆ X,

(π1 ◦ ψX ◦ φX)(C) = lfs(E,F )(C).

In an exactly analogous manner define φY and ψY using (E′, F ′) in place of (E,F ). Since

gfs(E,F ) = gfs(E′, F ′) and the definitions of Zm(X) and Zm(Y ) depended only on gfs(E,F )

and gfs(E′, F ′), respectively, we have Zm(X) = Zm(Y ) for each m. Therefore

ρ := φ−1
Y ◦ ψ

−1
Y ◦ ψX ◦ φX

is a Borel bijection from X/F to Y/F ′ such that for every F -class C ∈ X/F , lfs(E,F )(C) =

lfs(E′,F ′)(ρ(C)). Now ρ induces a Borel reduction from F to F ′ with the same property, so

(E,F ) ∼=B (E′, F ′) by Lemma 4.9. �

We have the following converse of Theorem 6.6, which should be compared to Theorem 3.8.

Theorem 6.9. Let E ⊆ F be smooth countable equivalence relations. If Jlfs(E,F )K is not

Borel parametrized, then there exist smooth countable equivalence relations E′ ⊆ F ′ such that

gfs(E,F ) = gfs(E′, F ′) but (E,F ) 6∼=B (E′, F ′).

In order to prove this we will need the following strengthening of Lemma 6.2.

Lemma 6.10. Let E ⊆ F and E′ ⊆ F ′ be smooth countable equivalence relations. Then

(E,F ) ∼=B (E′, F ′) if and only if there exists a Borel isomorphism φ from Jlfs(E,F )K to

Jlfs(E′, F ′)K that preserves local fine shapes, i.e., such that for every F -class C, lfs(E,F )(C) =

lfs(E′, F ′)(φ(C)).

Proof. Suppose E ⊆ F are defined on X and E′ ⊆ F ′ on Y . The forward direction is clear,

so assume φ : X/F → Y/F ′ is a Borel isomorphism from Jlfs(E,F )K to Jlfs(E′, F ′)K that

preserves local fine shapes. Define the smooth equivalence relation D on X by

x D y ⇔ x F y ∧ |[x]E | = |[y]E |.

Then E ⊆ D ⊆ F . Using 2.7, well-order in a uniform Borel manner the collection of E-classes

within each D-class in order type ω or finite, and for each x ∈ X let m(x) be the index of [x]E in

this well-ordering. Likewise, well-order in a uniform Borel manner the elements of each E-class

in order type ω or finite, and for each x ∈ X let k(x) be the index of x in this well-ordering. Also

for each x ∈ X let n(x) = 0 if [x]E is infinite, and let n(x) = |[x]E | otherwise. The functions

x 7→ k(x),m(x), n(x) are all Borel. Define the injective Borel function Φ : X → X/F × ω3 by

Φ(x) = 〈[x]F , k(x),m(x), n(x)〉.

In an exactly analogous manner, define Φ′ : Y → Y/F ′ × ω3 by

Φ′(y) = 〈[y]F ′ , k(y),m(y), n(y)〉.

Define ρ : X/F × ω3 → Y/F ′ × ω3 by ρ(〈C, k,m, n〉) = 〈φ(C), k,m, n〉. Then Φ′−1 ◦ ρ ◦ Φ is a

simultaneous Borel isomorphism from (E,F ) to (E′, F ′). �
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Proof of Theorem 6.9. We consider two cases. First suppose that Jlfs(E,F )K splits and is

standard, so that gfs(E,F ) is Borel by Lemma 6.8. For each m ∈ C+ let Ym be a fixed Borel

subset of N of cardinality m, and let

P :=
⊔

m∈C+

gfs(E,F )−1(m)× Ym ⊆ F ×N .

Since gfs(E,F ) is Borel, so is P . Let g : P → F be the projection map onto the first

coordinate, so that ĝ = gfs(E,F ) and JgK is Borel parametrized. By our observations following

the proof of Lemma 6.1, ĝ = gfs(Eg(P ), Fg(P )). Furthermore, JgK ∼=B J lfs(Eg(P ), Fg(P )) K
by Lemma 6.3, so that J lfs(Eg(P ), Fg(P )) K is Borel parametrized and thus is not isomorphic

to Jlfs(E,F )K. Hence (Eg(P ), Fg(P )) is a pair of smooth countable equivalence relations such

that (E,F ) 6∼=B (Eg(P ), Fg(P )) even though gfs(E,F ) = gfs(Eg(P ), Fg(P )).

Now suppose that Jlfs(E,F )K either is not standard or does not split. Let

U = {α ∈ F : gfs(E,F )(α) = c},

so that U is non-Borel analytic, and hence uncountable. Fix an uncountable Borel set B ⊆ U .

Let X̃ = X/F , and let G be the Borel set

G := graph (lfs(E,F ))
⋂

X̃ × (F \B) ⊆ X̃ ×F .

Let D be a Borel subset of X̃×B with all horizontal sections Dx uncountable such that D does

not admit a Borel uniformization. Let P = D ∪G and let P ′ = (X̃ × B) ∪G. Let g : P → F
and g′ : P ′ → F be the projections onto F . By construction,

gfs(E,F ) = ĝ = gfs(Eg(P ), Fg(P ))

= ĝ′ = gfs(Eg′(P
′), Fg′(P

′)).

We claim, however, that (Eg, Fg) 6∼=B (Eg′ , Fg′), so that (E,F ) must fail to be isomorphic to at

least one of them. To see this, suppose for contradiction that (Eg, Fg) ∼=B (Eg′ , Fg′). Then by

Lemma 6.10 there is a Borel isomorphism φ from Jlfs(Eg, Fg)K to Jlfs(Eg′ , Fg′)K that preserves

local fine shapes. By Lemma 6.3, this implies that there is a Borel isomorphism φ′ : P → P ′

from JgK to Jg′K such that for all p ∈ P , g(p) = g′(φ′(p)). In particular, then, φ′ is a Borel

isomorphism from JgK � X̃ ×B to Jg′K � X̃ ×B, which is impossible since the latter is selective

but the former is not. �

This leaves us with the analogue of Problem 3.12 for smooth countable pairs.

Problem 6.11. Classify pairs E ⊆ F of smooth countable equivalence relations (for which

Jlfs(E,F )K is not Borel parametrized) up to simultaneous Borel isomorphism.

We summarize some of the constructions of this section in Figure 2, which we now explain.

For the classes of smooth equivalence relations, pairs of smooth countable equivalence relations,

and local fine shape functions (i.e., Borel functions into F), we actually mean to consider equiv-

alence classes of these objects under the obvious notions of equivalence. For the first two this is

just ∼=B , and for Borel functions into F it is equality up to a Borel isomorphism of domains, or

essentially what in Section 3 we called Borel equivalence following [8]. Then the solid vertical
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local fine

shape functions

global fine

shapes

smooth eq.

relations

smooth

countable pairs

g 7→ (Eg, Fg)lfs( · , · )

g 7→ ĝJgK← [ g

gfs( · , · ) = ˆlfs( · , · )Jlfs( · , · )K

Figure 2.

and horizontal arrows represent explicit constructions that respect these equivalences. The two

solid diagonal arrows are just the compositions of the appropriate vertical and horizontal ones.

The content of the diagram of solid arrows lies in the fact that the vertical arrows are

mutually inverse bijections, while the horizontal ones are surjective. So for any Borel function

g : X → F there is a Borel isomorphism π : Bg(X)→ X such that

gπ = lfs(Eg, Fg),

and for any pair E ⊆ F of smooth equivalence relations on the standard Borel space X we have

(E,F ) ∼=B

(
Elfs(E,F )(X/F ), Flfs(E,F )(X/F )

)
.

Hence the diagram immediately displays the facts that

ĝ = gfs
(
Eg(X), Fg(X)

)
and JgK ∼=B Jlfs(Eg, Fg)K.

Next consider the dotted arrows. For every smooth equivalence relation D there exists a

Borel reduction g from D to ∆(F), and fixing such g we obtain the pair (Eg, Fg) and note that

D ∼=B JgK ∼=B Jlfs(Eg, Fg)K. Likewise any global fine shape function φ arises as ĝ for some

Borel function g into F , in which case φ = ĝ = gfs(Eg, Fg). However, we have no canonical

way of recovering g from either JgK or ĝ in general, which explains the use of dotted arrows.

Finally, to conclude this section we consider the question of relative complexities of clas-

sification problems. Let us slightly relax the notion of Borel equivalence from [8] that was

discussed in Section 3 to allow f and g to have different domains. Thus we say that Borel

functions f : X → F and g : Y → F are Borel equivalent, and write f ≡B g, if there is a Borel

bijection φ : X → Y such that f = gφ. Let us also say that f, g are weakly Borel equivalent,

and write f ≡wB g, if there exist Borel bijections φ : X → Y and ψ : ran(f) → ran(g) such

that ψf = gφ. (Here we ask ψ to be Borel measurable, which makes sense even if ran(f) and

ran(g) are non-Borel analytic). So we have ≡B ⊆ ≡wB , and it is easy to check that for any Borel

functions f : X → F and g : Y → F , f ≡wB g ⇔ JfK ∼=B JgK.
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Unfortunately, there is no natural way to realize the collections of smooth equivalence rela-

tions, pairs of smooth countable equivalence relations, or Borel functions into F as standard

Borel spaces, so the usual framework of Borel equivalence relations does not apply to the equiva-

lences on these classes pictured in Figure 2. Nevertheless, we can interpret the correspondences

given by the vertical arrows as expressing the fact that the problem of classifying pairs of

smooth countable equivalence relations up to ∼=B is essentially identical to that of classifying

Borel functions into F up to ≡B . Similarly, the assignment g 7→ JgK can be understood as

reducing the problem of classifying Borel functions up to ≡wB to that of classifying smooth

equivalence relations up to ∼=B .

On the other hand, we know of no canonical way of recovering from E a Borel function g

such that E ∼=B JgK, and likewise no canonical way of choosing a ≡B-class from within a ≡wB-

class. It would be interesting to find natural reductions, if they exist, relating the problems of

Borel equivalence and weak Borel equivalence of Borel functions, or equivalently to determine

whether there exist natural mappings in either direction between smooth equivalence relations

and smooth countable pairs of equivalence relations that reduce the isomorphism problem of

one to that of the other.

Appendix

We collect here some basic facts from descriptive set theory that are needed in the main

body of the paper, along with the proof of Proposition 6.7.

Appendix A. Some background from Descriptive Set Theory

A standard Borel space is a measurable space (X,B) such that B is the σ-algebra of Borel

sets generated by some Polish topology on X. Here a topological space (X, τ) is Polish if it is

separable and there is a complete metric on X compatible with τ . Our standard example is

Baire space N = ωω of sequences of natural numbers, which is Polish in the product of discrete

topologies. A map f : X → Y between standard Borel spaces (X,BX) and (Y,BY ) is Borel if

f−1(B) ∈ BX for every B ∈ BY , or equivalently if graph(f) is a Borel subset of the product

X×Y ; f is bimeasurable if additionally f(B) ∈ BY for every B ∈ BX . A bimeasurable bijection

between standard Borel spaces is called an isomorphism. The image of a Borel set under an

injective Borel function is Borel, so that an injective Borel function is an isomorphism onto its

range. We make constant use of the following fact, due to Kuratowski:

Fact A.1 (The isomorphism theorem). The standard Borel spaces X and Y are isomorphic if

and only if they have the same cardinality.

A set A in a standard Borel space X is analytic if it is the image of some Borel set under

a Borel function, and coanalytic if its complement is analytic. Suslin showed that non-Borel

analytic sets exist, and further proved the following:

Fact A.2 (Suslin’s Theorem). A subset of a standard Borel space is Borel if and only if it is

both analytic and coanalytic.
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Concerning the possible cardinalities of analytic and coanalytic sets, we have:

Fact A.3. Every uncountable analytic (in particular Borel) set contains a homeomorph of 2ω

and therefore has cardinality c ([17, 4.3.5]). Under the assumption of Analytic Determinacy,

the same is true of coanalytic sets; in ZFC, every uncountable coanalytic set has cardinality ℵ1

or c ([17, 4.3.17]).

From A.1 and A.3 it follows that there is exactly one uncountable standard Borel space up

to isomorphism. Furthermore, since sections of Borel sets are Borel, from A.3 we have that

every equivalence class of a Borel equivalence relation has cardinality in C+ = {1, 2, . . . ,ℵ0, c}.
A powerful generalization of A.3 that we use constantly is Silver’s Theorem.

Fact A.4 (Silver’s Theorem [16]). Let E be a coanalytic equivalence relation on the standard

Borel space X. If E has uncountably many classes, then ∆(2ω) ≤B E.

We require a few additional facts concerning analytic sets, coanalytic sets, and cardinality.

Fact A.5 ([17, 4.3.7], [6, 29.19 and 29.21]). Let X and Y be standard Borel spaces. If B ⊆
X × Y is Borel (or even analytic), then {x ∈ X : Bx is uncountable} is analytic. In fact, a set

A ⊆ X is analytic if and only if there exists a Borel set B ⊆ X ×N such that

A = {x ∈ X : Bx is uncountable} = {x ∈ X : Bx 6= ∅}.

On the other hand, Lusin’s Unicity Theorem [6, 18.11] states that for B ⊆ X ×Y Borel, the

set {x ∈ X : |Bx| = 1} is coanalytic. We need the following generalization of this:

Fact A.6 ([8, Lemma 1]). Let X and Y be standard Borel spaces, with B ⊆ X × Y Borel.

Then for each n = 0, 1, . . . ,ℵ0, the set {x ∈ X : |Bx| = n} is coanalytic.

Using these facts together with Silver’s Theorem we can prove the following.

Proposition A.7. Let E be a Borel equivalence relation on the standard Borel space X. Then

(i) for all m ∈ C+, nm(E) ∈ C ∪ {ℵ1};
(ii) nc(E) ∈ C;

(iii) if X
(E)
c is Borel (i.e., if E splits), then X

(E)
m is Borel and nm(E) ∈ C for all m ∈ C+.

Proof. Let E be a Borel equivalence relation on the standard Borel space X. Recall that for

each m ∈ C, X
(E)
m is the set of x ∈ X such that |[x]E | = m, so that we have nm(E) ·m = |X(E)

m |.
Since X

(E)
≤ω is coanalytic, E ∪

(
X

(E)
≤ω × X

(E)
≤ω
)

is a coanalytic equivalence relation on X with

nc(E) + 1 many classes; therefore if nc(E) is uncountable, then we must have nc(E) = c by

Silver’s Theorem. This proves (ii) and part of (i). To complete the proof of (i), suppose that

m ∈ C+ is countable, so that X
(E)
m is coanalytic by A.6. Then if nm(E) is uncountable, we must

have nm(E) = |X(E)
m | ∈ {ℵ1, c} by A.3. Finally, if X

(E)
c is Borel then E � X(E)

≤ω is a countable

Borel equivalence relation and claim (iii) is Fact A.11 below. �

In ZFC we cannot rule out ℵ1 as a possible cardinality for nm(E), m 6= c.
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Proposition A.8. It is consistent with ZFC +¬CH that for each function α : C+ → C ∪ {ℵ1}
such that α(c) = c, there is a smooth equivalence relation E such that fs(E) = α.

Proof. Decompose N into countably many homeomorphic copies of itself, N =
⊔
Ym, where

m ranges over {0, 1, 2, . . . ,ℵ0}. Let α be given as in the hypothesis. Working in a model of

ZFC +¬CH, for each m ∈ {1, 2, . . . ,ℵ0} let Cm be a coanalytic set of cardinality α(m) in Ym.

By [8, Theorem 5] there is a Borel function g : N → N such that for each m ∈ {1, . . . ,ℵ0},
Cm = {y ∈ N : |g−1({y})| = m}, and by adjusting g if necessary we can take it to have

uncountably many uncountable fibers. Now let x E y ⇔ g(x) = g(y). �

Next we recall the Lusin-Novikov uniformization theorem together with some of its conse-

quences. If B ⊆ X × Y , a uniformization of B is a subset C ⊆ B such that πX(B) = πX(C)

and for every x ∈ X, Cx contains at most one point. Since images of Borel sets under injective

Borel functions are Borel, any set B ⊆ X × Y admitting a Borel uniformization has Borel

projection onto X.

Fact A.9 (Lusin-Novikov uniformization). Let X and Y be standard Borel spaces and let

B ⊆ X×Y be Borel. If every section Bx of B is countable, then B admits a Borel uniformization

and therefore πX(B) is Borel. (See [17, 5.8.11] or [6, 18.10]).

The Lusin-Novikov uniformization theorem can be used to prove an important representation

theorem for countable Borel equivalence relations due to Feldman and Moore (see [17, 5.8.13]).

Fact A.10 (Feldman-Moore, [4]). If E is a countable Borel equivalence relation on the standard

Borel space X, then there is a countable group Γ and a Borel action of Γ on X such that E is

the orbit equivalence relation EXΓ arising from the action.

Fact A.11 (see [6, 18.15]). If E is a countable Borel equivalence relation on the standard Borel

space X, then for each 1 ≤ m ≤ ω, the set Xm = {x ∈ X : |[x]E | = m} is Borel.

Proof. Fix by the Feldman-Moore theorem a countable group Γ = {γi : i ∈ ω} and a Borel

action of Γ on X such that E = EXΓ . The claim follows from the fact that for each 1 ≤ m < ω,

x ∈ X≥m ⇔ (∃i1, . . . , im ∈ ω)
∧

1≤j 6=k≤m

γij · x 6= γik · x

and

x ∈ X≤m ⇔ (∀i0, . . . , im ∈ ω)
∨

0≤j 6=k≤m

γij · x = γik · x. �

Next we recall examples that can be used to separate the notions of smooth, standard,

selective, and split Borel equivalence relations.

Example A.12 ([6, 26.2 and 29.21]). For any uncountable standard Borel spaces X and Y ,

there exists a Borel set P ⊆ X × Y such that πX(P ) is not Borel, so in particular P does not

admit a Borel uniformization. Moreover, P can be taken to have all nonempty sections Px

uncountable.
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Example A.13 ([6, 18.17], [17, 5.1.7]). For any uncountable standard Borel spaces X and

Y , there exists a Borel set P ⊆ X × Y such that πX(P ) = X but P does not admit a Borel

uniformization. Moreover, P can be taken to have all sections Px uncountable.

The following “fattening” trick is sometimes helpful in obtaining uncountable sections in

contexts similar to those of Examples A.12 and A.13.

Fact A.14. Let X and Y be standard Borel spaces and let B ⊆ X × Y be Borel. Then there

exists a Borel set D ⊆ X × Y containing B such that πX(B) = πX(D), Dx is uncountable for

all x ∈ πX(D), and B admits a Borel uniformization if and only if D does.

Proof. Without loss of generality, X = Y = N . Fix a Borel bijection φ : N → N 2, and write

φ(x) = (φ1(x), φ2(x)) ∈ N 2. Define a new Borel set B′ ⊆ X × Y by

(x, y) ∈ B′ ⇔ (x, φ1(y)) ∈ B,

and let D = B ∪ B′. Clearly D has the same projection as B and has all nonempty sections

uncountable. A Borel uniformization for B is again one for D. Conversely, suppose C is a Borel

uniformization of D, and define α : X2 → X2 by α(x, y) = (x, φ1(y)). Then α(C ∩ (B′ \B)) ∪
(C ∩B) is a Borel uniformization of B. �

Finally, we record a useful theorem of Mauldin that we use to prove that coarse shape is a

complete biembeddability invariant for smooth Borel equivalence relations (Proposition 3.4).

Fact A.15 (Mauldin [10]). Let X and Y be Polish spaces, A ⊆ X × Y analytic, and suppose

U := {x ∈ X : Ax is uncountable}

is uncountable. Then there is a nonempty compact perfect set P ⊆ U and a Borel isomorphism

φ of P × 2ω onto a subset R of A such that for each p ∈ P , φ � {p} × 2ω is a homeomorphism

onto {p} ×Rp.

Appendix B. Proof of Proposition 6.7

Proposition B.1. Let D be a smooth Borel equivalence relation on the standard Borel space

X, and let F ⊆ D be a smooth countable Borel sub-equivalence relation. Then D is Borel

parametrized if and only if D/F is Borel parametrized.

Proof. Write X̃ = X/F . Note that X
(D)
≤ω is Borel if and only if X̃

(D/F )
≤ω is Borel, so by 3.9

we may assume without loss of generality that every D-class is uncountable. Also by 3.9, we

may assume |X/D| is uncountable. Furthermore, if either D or D/F is Borel parametrized,

then D is standard, so for the rest of the proof we assume D is standard. Using 2.2, fix a

standard Borel space Y and a surjective Borel reduction g : X → Y from D to ∆(Y ). Let

G = graph(g) ⊆ X × Y , and let D0 be the horizontal section equivalence relation on G, so

that D ∼=B D0. Also let F0 denote the natural isomorphic copy of F contained in D0, namely

(x, y) F0 (x′, y′)⇔ x F x′ ⇔ x F x′ ∧ y = y′.

Now, assume D is Borel parametrized. Then by [9, 2.4] there is a conditional probability

distribution µ on Y ×BX such that for all y ∈ Y , µ(y, ·) is atomless and µ(y,Gy) = 1. Using 2.7,
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let {Tn : n ∈ ω} be a countable family of Borel transversals for F0 such that ∪nTn = G. Then

for each y ∈ Y , Gy = ∪nT yn , so there must exist n (depending on y) such that µ(y, T yn ) > 0.

For each n, let Yn be the set of y ∈ Y for which n is least such that µ(y, T yn ) > 0. Define the

Borel subset T ⊆ G by

(x, y) ∈ T ⇔ y ∈ Yn ∧ (x, y) ∈ Tn.

Then T is a Borel transversal for F0 such that for all y ∈ Y , µ(y, T y) > 0. By [9, 2.1], the

function ν : Y × BX → R defined by

ν(y,E) = µ(y, T y ∩ E)

is a conditional measure distribution on Y × BX . For each y ∈ Y , ν(y, ·) is atomless and

nontrivial since µ(y, ·) is, and ν(y, T y) = µ(y, T y) > 0. It now follows from [9, 2.3] that D0 � T

is Borel parametrized. But D0 � T ∼=B D0/F0 via the quotient map, and D0/F0
∼=B D/F .

The proof of the converse is similar. Supposing that D/F is Borel parametrized, fix a Borel

transversal T for F0 and identify D0/F0 with D0 � T via the quotient map, so that D0 � T

is Borel parametrized. By [9, 2.4] there is a conditional probability distribution ν on Y × BX
such that for all y ∈ Y , ν(y, ·) is atomless and ν(y, T y) = 1. Define µ : Y × BX → R by

µ(y,E) = ν(y,E ∩ T y).

Then µ is a conditional probability distribution on Y × BX such that for each y ∈ Y , µ(y, ·)
is atomless and µ(y,Gy) = 1 > 0. By [9, 2.4] it follows that D0, and hence D, is Borel

parametrized. �
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